Home Search Collections Journals About Contact us My IOPscience

Photoemission spectroscopy of the filled skutterudite compound YbFe₄Sb₁₂

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2003 J. Phys.: Condens. Matter 15 S2197 (http://iopscience.iop.org/0953-8984/15/28/351)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.121 The article was downloaded on 19/05/2010 at 14:17

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 15 (2003) S2197-S2200

Photoemission spectroscopy of the filled skutterudite compound YbFe₄Sb₁₂

T Okane¹, S-i Fujimori¹, K Mamiya¹, J Okamoto¹, Y Muramatsu¹, A Fujimori^{1,2}, Y Nagamoto³ and T Koyanagi³

 ¹ Synchrotron Radiation Research Centre, Japan Atomic Energy Research Institute, Mikazuki, Hyogo 679-5148, Japan
 ² Department of Complexity Science and Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
 ³ Department of Electrical and Electronic Engineering, Yamaguchi University, 2557 Tokiwadai, Ube 755-8611, Japan

Received 12 November 2002 Published 4 July 2003 Online at stacks.iop.org/JPhysCM/15/S2197

Abstract

The electronic structure of YbFe₄Sb₁₂, which shows heavy-fermion or mixedvalence behaviour, are studied by high-resolution photoemission spectroscopy. The observed Yb²⁺ signal is composed of two spin–orbit doublets which might be interpreted as bulk and surface contributions. The relationship between the energy positions of the two doublets is anomalous compared to those of the conventional mixed-valence Yb compounds.

1. Introduction

The filled skutterudite compounds RT_4X_{12} (R = alkaline earth, rare earth, actinide; T = Fe, Ru, Os; X = pnictogen: P, As, Sb) exhibit a variety of physical properties such as superconductivity, magnetic ordering, heavy-fermion behaviour, and metal–insulator transition. Among them, YbFe₄Sb₁₂ shows heavy-fermion or intermediate-valence behaviour in the magnetic, electrical transport, and thermal properties, which might be associated with a valence instability of the Yb atom [1]. The characteristic temperature for the valence fluctuation was estimated to be $T^* \approx 70$ K [1].

We have performed high-resolution ultra-violet photoemission spectroscopy (UPS) and soft-x-ray synchrotron radiation photoemission spectroscopy (SRPES) experiments to elucidate the valence-band electronic structure of YbFe₄Sb₁₂. The SRPES measurement was aimed at obtaining more bulk-sensitive information, while the UPS measurement was performed with a better energy resolution. The spectra of LaFe₄Sb₁₂, used as a reference compound which contains no 4f electrons, were also measured.

Figure 1. The dependence on hv of the valence-band SRPES spectra of YbFe₄Sb₁₂.

2. Experiment

Polycrystalline samples of MFe₄Sb₁₂ (M = La, Yb) were prepared from high-purity metals: M (99.9%), Fe (99.9985%), and Sb (99.9999%), using the spark plasma sintering method performed under a pressure of 30 MPa.

The photoemission experiment was performed using a GAMMADATA SES2002 electron energy analyser. The light sources were the He II resonance line (40.8 eV) produced by a He discharge lamp and synchrotron radiation (500 and 700 eV) at the beamline BL23SU of SPring-8. The overall instrumental resolution was 11 meV for the UPS and \sim 200 meV for the SRPES. The samples were cooled down to 15 K. Clean surfaces of the samples were obtained *in situ* by scraping with a diamond file for the SRPES and fracturing for the UPS.

3. Results and discussion

Figure 1 shows the valence-band SRPES spectra of YbFe₄Sb₁₂ measured at hv = 500 and 700 eV. The dominant features from the Fermi level E_F to 3 eV are attributed to the Yb²⁺ signal, and those from 6 to 13 eV to the Yb³⁺ signal. The Yb²⁺ signal is interpreted as a spin–orbit doublet of the 4f_{7/2} and 4f_{5/2} components. The features in the figure are composed of sharp main doublet peaks and shoulder-like doublet structures on the lower-binding-energy side of the main peaks. Usually the Yb²⁺ photoemission signal of mixed-valence Yb compounds is composed of two doublets of surface and bulk contributions [2], and the same interpretation might be applied to the results here. The spectrum measured at 500 eV is more surface sensitive than the spectrum measured at 700 eV due to the shorter electron mean free path. Since the shoulder-like structures can be attributed to the bulk and surface contributions, respectively.

The overall line shape of the Yb³⁺ signal can be described in terms of the calculated atomic multiplet lines [3] shown by a bar diagram in the figure, although the line shape is quite obscure. This may possibly indicate an overlapping of different components which have energy positions shifted from each other. The intensity of the Yb³⁺ signal is higher in the spectrum for $h\nu = 700$ eV than for 500 eV. Therefore, the Yb³⁺ signal observed here is attributed dominantly to the bulk contribution.

Figure 2. Upper panel: valence-band SRPES spectra of $YbFe_4Sb_{12}$ and $LaFe_4Sb_{12}$ and the difference. Lower panel: the fit for the Yb^{2+} signal of the difference spectrum.

To extract the Yb 4f component from the valence-band spectra, we have subtracted the spectrum of LaFe₄Sb₁₂ from that of YbFe₄Sb₁₂. The result is shown in the upper panel of figure 2. The line shape analysis has been performed on the difference spectrum as shown in the lower panel of figure 2. In the analysis, the Yb²⁺ signal is decomposed into two spin–orbit doublets. The line shape of each component is a convolution of Gaussian and Lorentzian functions with the Doniach–Sunjic asymmetric broadening. The relative intensity of the 4f_{5/2} and 4f_{7/2} components has been fixed at 3:4. From the intensity ratio between the areas of the Yb³⁺ signal and the bulk component of the Yb²⁺ signal obtained from the fitting, we have estimated the valence of the Yb atom as 2.62, which is close to the value 2.68 estimated from the L_{III} x-ray absorption study [4].

The peak positions of the bulk and surface $4f_{7/2}$ peaks are determined as 0.91 and 0.79 eV, respectively. The relationship between the energy positions of the bulk and surface components here is quite anomalous: usually in the mixed-valence Yb compounds, the energy position of the surface component is deeper than that of the bulk since the lower valence is favoured at the surface compared to the bulk [2]. This anomaly may be relevant to the crystal structure of the filled skutterudite compounds, in which the Yb²⁺ configuration is highly favourable because the smaller radii of the Yb³⁺ ion prevent adequate bonding in an oversized atomic cage.

The energy position 0.91 eV of the bulk $4f_{7/2}$ peak is close to those for pure divalent Yb metal (~1.2 eV) rather than those for the conventional mixed-valence Yb compounds (<0.1 eV) [2]. Therefore, the position observed here seems to be too deep to explain the heavy-fermion behaviour of YbFe₄Sb₁₂ with a characteristic temperature of $T^* \approx 70$ K [1]. The one possible scenario for solving this discrepancy is the existence of irregular trivalent-like Yb sites besides the regular divalent-like Yb sites. However, we could not observe a distinct 4f signal such as a Kondo peak just below E_F in the SRPES spectra, possibly due to insufficient energy resolution.

Figure 3. Valence-band UPS spectra of $YbFe_4Sb_{12}$ and $LaFe_4Sb_{12}$, the difference, and the fit for the difference.

To clarify the Yb 4f signal just below E_F , a UPS measurement with a better energy resolution was performed as shown in figure 3. To extract the Yb 4f signal, we have subtracted the spectrum of LaFe₄Sb₁₂ from that of YbFe₄Sb₁₂. In the difference spectrum, we find the two spin–orbit doublets at the same energy positions as in the SRPES spectra. The difference spectrum is fitted with the same energy positions for all the components and the same widths for the bulk component as for the SRPES spectrum, while the relative intensity and the width of the surface component are varied to obtain better fitting, as shown in the figure. One can see the extra 4f intensity just below E_F which cannot be fitted, while the fitted curve slightly deviates from the measured spectrum at around 1.3 eV, separated from E_F by the energy of the spin–orbit splitting. Therefore, the result indicates the possibility of the existence of a trivalent-like electronic state for Yb besides the major divalent-like state.

4. Summary

In summary, the electronic structure of $YbFe_4Sb_{12}$ has been investigated by means of UPS and SRPES. The anomalous relationship between the energy positions of the bulk and surface components of Yb^{2+} signal has been observed. The major Yb 4f signal seems to be divalent-like, while the possibility of the existence of irregular trivalent-like (Kondo-like) Yb sites is indicated.

References

- Dilley N R et al 1998 Phys. Rev. B 58 6287
 Dilley N R et al 2000 Phys. Rev. B 61 4608
- [2] Joyce J J et al 1996 Phys. Rev. B 54 17515
- [3] Gerken F 1983 J. Phys. F: Met. Phys. 13 703
- [4] Leithe-Jasper A et al 1999 Solid State Commun. 109 395